If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w^2+2w-3=0
a = 7; b = 2; c = -3;
Δ = b2-4ac
Δ = 22-4·7·(-3)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{22}}{2*7}=\frac{-2-2\sqrt{22}}{14} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{22}}{2*7}=\frac{-2+2\sqrt{22}}{14} $
| 625^2x=125 | | (X9)x3=16x(9x3) | | 0=35x+30 | | |x-5|+17=47 | | 44+18x-3+6+25x=180 | | N/5=10n= | | 3^x=27^4 | | 3^2x=27^3 | | 3^x=27^2 | | x^2=18/30 | | √4x-x+8=0 | | 2x=4x-3=11x+1 | | t/2=5.2 | | a=5/8 | | 3^2^x=27^4 | | 3^{2x}=27^4 | | 3^(2x)=27^3 | | 4x-11+3x=10 | | 2b^2+9b=-9 | | 7y-4=y+50 | | 26x+7=17x+1 | | 26x+7+17x+1=180 | | 3^(3x)=27^(4) | | 105+6x+21=180 | | 3^4x=27^4 | | 3/2x=24/4 | | 3^2x=6^4 | | 3^(2x)=27^(4) | | 3^(2x)=27^4 | | (8+1y)(4y+9)=0 | | 6x+21+105=180 | | 3^(2x)=531441 |